

Mark Scheme (Results)

January 2021

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WST02_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what

they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme				Marks		
1(a)	B(30, 0	.05)		B1			
(1.)	T1			B1	(1)		
(b)	The probability (oe) of an <u>oyster</u> surviving/not surviving is constant The survival of each <u>oyster</u> is independent of the others						
(c)(i)			M1	(1)			
(-)(-)	$C_{24}(0)$	$(0.05)^6 (0.95)^{24}$ oe					
(::)	D(V > 2	= 0.002708	awrt 0.0027	Al			
(ii)	$P(Y \ge 3) = 1 - P(Y \le 2)$ from $Y \sim B(30, 0.05)$ or $P(X \le 27)$ from $X \sim B(30, 0.95)$						
		= 1 - 0.8122					
		= 0.1878	awrt 0.188	A1			
					(4)		
(d)	$A \sim Po($			B1			
	$P(A \ge n)$		4.0.07	N (1			
		$(A=1) < 0.2$ or $P(A \le 6) = 0.1301awrt 0.13$ or $P(A \ge 7) = 0.8699a$	wrt 0.87	M1			
	n = 7			Alcao	(3)		
(e)	$H_0: p =$	0.05, $H_1: p > 0.05$		B1	(3)		
(-)	· · ·	$C \sim B(25, 0.05)$ and $P(C \ge 4)$ Using $D \sim B(25, 0.95)$ and $P(D \le 21)$		M1			
		$(4) = 0.0341 / CR C \ge 4$ $P(D \le 21) = 0.0341 / CR D \le 21$		A1			
	Evidence to reject H ₀ , in the CR, significant						
	There is evidence that the proportion of oysters not surviving has increased (oe)/ Jim's						
	belief is supported.)		
				Tot	(5) al 14		
		Notes		100	al 1 4		
(a)	B1	Must include B(inomial), $n = 25$ and $p = 0.05$. Do not allow $p = 0.95$ in					
(b)	B1	For either correct assumption in context. Ignore extraneous non-contra	dicting commen	its.			
(c)(i)	M1	allow ${}^{30}C_6$ or $P(X \le 6) - P(X \le 5)$ with one correct probability					
	A1	awrt 0.0027 (correct answer scores 2 out of 2)					
(ii)	M1	Writing/using $1 - P(Y \le 2)$ with B(30, 0.05) or writing/using $P(X \le 2)$	(7) with $B(30, 0)$	0.95)			
(d)	A1 B1	awrt 0.188 (correct answer scores 2 out of 2) Writing or using Po(10) (sight of 0.1301 or 0.8699 can imply this ma	rk)				
(u)	M1	Allow $P(A < n) < 0.2$ or $P(A < 7) = awrt 0.13$ or $P(A > 6) = awrt$					
	A1cao	n = 7 which must come from use of Po(10) or N(10, 9.5)					
	Note:	Use of normal approx. with $\mu = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$.	.can score M1				
		Exact binomial gives $P(A \le 6) = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A					
(e)	B1	Both hypotheses correct (allow use of p or π). Allow H ₀ : $p = 0.95$, H	[1: p < 0.95]				
	M1	Using B(25, 0.05) and writing/using P($C \ge 4$) or if CR given P($C \ge$		0.95) an	ıd		
		writing/using P($D \leq 21$) or if CR given P($D \leq 20$)	, , ,	,			
	A1	Correct probability to 3sf (must not go on and give incorrect CR) or co	rrect CR (ignore	e upper	tail)		
	dM1	(dep on 1^{st} M1) A correct non-contextual statement (do not allow contr	······				
		comments) which is consistent with their prob and 0.05 (If not stated, may be implied by A1)					
<u>sc</u> .	Alcso 2 tail	All previous marks must be awarded. Correct contextual conclusion wi					
SC:	2-tail	2-tail Use of two-tailed test can score max: B1M1A1M1A0, but must not reject H_0 for 2^{nd} M1					

Question Number		Scheme		Marl	KS
2(a)	1 - F(3.5)	() = 1 - 0.97127		M1	
		= 0.028727	awrt 0.0287	A1	
					(2)
(b)	$W \sim B($	30,"0.0287")		M1	
	1 - P(W)	≤ 1) = 1 - $\left(\left(1 - "0.0287" \right)^{30} + {}^{30}C_1 \left("0.0287" \right)^1 \left(1 - "0.0287" \right)^{29} \right)$ oe		M1	
		$= 1 - 0.78748 \dots = 0.2125\dots$ awrt 0.213 to	o awrt 0.216	A1	
					(3)
(c)	$\frac{\mathrm{dF}(w)}{\mathrm{d}w} =$	$=\frac{1}{3}\left(1-\frac{w^3}{64}\right)$		M1	
	$E(W^2) = \int_0^4 \frac{1}{3} \left(w^2 - \frac{w^5}{64} \right) dw = \frac{1}{3} \left[\frac{w^3}{3} - \frac{w^6}{384} \right]_0^4$			dM1	
		$=\frac{32}{9}$		A1	
	$Var(W) = \frac{32}{9} - 1.6^2$			M1	
	$=\frac{224}{2}$		A1		
		225			
					(5)
				Total	10
()	2.64	Notes			
(a)	M1	For writing or using $1 - F(3.5)$ Implied by correct answer			
	Al	awrt 0.0287		20	
(b)	M1 For writing or using B(30,"0.0287") allow n ("their 0.0287") ¹ (1-"their 0.02				
(0)	ignore any number for n (allow their p to 2sf)				
	M1	For $1 - ((1 - "0.0287")^{30} + {}^{30}C_1 ("0.0287")^1 (1 - "0.0287")^{29})$ Allo	$^{30}C_{29}$ in an	y form	
	A1	allow answer in the range awrt 0.213 to awrt 0.216			
(c)	M1	Differentiating $F(w)$ at least one term correct			
	dM1 (Dep on previous M1). Attempting to integrate expanded $w^2 f(w)$. At least one $w^n \to w^{n+1}$ Ignore limits for this M mark.				<i>v</i> ^{<i>n</i>+1}
	A1	awrt 3.56 must come from correct algebraic integration (may be	embedded)		
	M1	Use of correct formula with values substituted. Must see the sub		$\tilde{\mathbf{b}}^2$	
	A1	Dependent upon 2 nd M1 awrt 0.996			
		(A correct answer with no algebraic integration seen may score	M1M0A0M1A	A0)	

Question Number	Neneme						
3(a)	$P(X \neq 4$	$= 1 - P(X = 4)$ oe $\left(= 1 - \frac{e^{-7}7^4}{4!} $ or $1 - (0.1730 - 0.0818) \right)$		M1			
		= 0.90877	awrt 0.909	A1			
		· · · · · · · · · · · · · · · · · · ·			(2)		
(b)	$P(Y=1) = (1 - "0.90877")("0.90877")^{4} \times {}^{5}C_{1}$			M1M	1		
	= 0.311			A1	(2)		
(c)(i)	$\frac{1}{2}$ - 0.0	7.0		B1	(3)		
(C)(I)		$\lambda = 0.07n$ $A \sim N(0.07n, 0.07n)$					
	3.5-"0.07	n"		M1 M1			
	$\sqrt{0.07n}$			IVI I			
	$\frac{3.5-0.07}{\sqrt{0.07n}}$	$\frac{7n}{2} = -1.55 \text{ or } "0.07n" - (1.55\sqrt{0.07})\sqrt{n} - 3.5 = 0$		B1			
	$n - \left(\frac{1.55}{0.07}\right)$	$\frac{5}{7}\sqrt{0.07}\right)\sqrt{n} - \frac{3.5}{0.07} = 0 \Longrightarrow n - 1.55\sqrt{\frac{n}{0.07}} - 50 = 0$		Alese)		
					(5)		
(ii)	$\sqrt{n} = \frac{\frac{1.5}{\sqrt{0.5}}}{\frac{1.5}{\sqrt{0.5}}}$	$\frac{5}{\frac{5}{07}} \pm \sqrt{\left(\frac{1.55}{\sqrt{0.07}}\right)^2 + 4 \times 50}}_{2} = \text{awrt} - 4.72 \text{ or awrt } 10.6 (4\sqrt{7})$		M1			
	<i>n</i> = 112			Alcad)		
					(2)		
(d)	$H_0: \lambda =$	$7 H_1: \lambda > 7$		B1			
	$P(X \ge 1$	5) = 1 – P($X \le 14$) P($X \ge 14$) = 0.0128		M1			
		$= 1 - 0.9943 \qquad P(X \ge 15) = 0.0057$					
		$= 0.0057$ CR $X \ge 15$		A1 dM1			
		Reject H ₀ , in the CR, Significant					
	There is evidence that the number of water fleas per 100 ml of the pond water has increased				(5)		
				Tot	al 17		
		Notes	1				
(a)	M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe					
(b)	M1	$(1 - "\text{their } 0.909")^4$ ("their 0.909") or $(1 - "\text{their } 0.909")$ ("their 0.909") ⁴ allow their	values to 2s.f.				
	M1						
	A1	awrt 0.312 or awrt 0.311					
(c)(i)	B1	Writing or using mean as 0.07 <i>n</i>					
	M1 M1	Normal with the mean = variance which must be in terms of n (may be implied by correct standardisation).					
	NI I	Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5, 3, 3.5,4, 4.5 (A correct standardisation implies B1M1M1)					
	B1	Their standardisation = ± 1.55					
	Alcso	Must come from compatible signs in standardisation. Need at least one step between standardisation					
		indicating division by 0.07 and correct equation.					
(ii)	M1	Correct method to solve given quadratic or sight of awrt -4.72 or awrt 10.6					
(d)	Alcao B1						
(4)		B1 Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] Eq. 1. $P(X \le 14)$ or for CP: and of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$					
	M1						
	A1	(den on 1 st M1) A correct non-contextual statement (do not allow contradicting non-contextual comments)					
	dM1	which is consistent with their prob and 0.01. (If not stated, may be implied by A	A1)				
	A1	All previous marks must be awarded. Correct context. conclusion with increase	(oe) and fleas				

Question Number		Scheme		Marks		
4(a)		$\int_{0}^{a} k(a-x)^{2} dx = \left[k \left(a^{2}x - ax^{2} + \frac{x^{3}}{3} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k(a-x)^{3}}{3} \right]_{0}^{a}$				
	$k\left(a^3-a^3-a^3\right)$	$-a^3 + \frac{a^3}{3} = 1$ or $\frac{ka^3}{3} = 1$ $\Rightarrow ka^3 = 3$				
				(3)		
(b)	$\int_0^a kx (a - b) dx = \int_0^a kx (a - b) dx $	$\int_{0}^{a} kx(a-x)^{2} dx = \left[k \left(\frac{a^{2}x^{2}}{2} - \frac{2ax^{3}}{3} + \frac{x^{4}}{4} \right) \right]_{0}^{a} \text{or} \left[\frac{-kx(a-x)^{3}}{3} + \frac{k(a-x)^{4}}{12} \right]_{0}^{a}$				
		$k\left(\frac{a^2a^2}{2} - \frac{2aa^3}{3} + \frac{a^4}{4}\right) = 1.5$ or $\left[\frac{ka(a)^3}{3} - \frac{k(a)^4}{12}\right]_0^a = 1.5$ or $ka^4 = 18$ oe				
	$\frac{ka^4}{ka^3} = 6$	$\frac{a^4}{a^3} = 6$ or $\frac{18}{3} = 6$ [: $a = 6$]				
			_	(4)		
(c)	F(x) =	$\frac{1}{72}\left(36x-6x^2+\frac{x^3}{3}\right)$	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right) = 0.5 \text{ oe}$	M1		
	F(1.15)(= 0.47) and $F(1.25) (= 0.5038)$	1.2377	M1		
	(0.47(18	$F(1.15) = awrt \ 0.47, F(1.25) = awrt \ 0.504 \\ (0.47(18) < 0.5 < 0.503(8)) \text{ therefore the median is } 1.2 \text{ to } 1 \text{ decimal place.} $				
				(3)		
				Total 10		
		Notes				
(a)	M1	Integrating f(x) at least 1 term correct. For M1 allow $\frac{\pm k(a-x)^3}{3}$				
	A1	Correct integration (ignore limits)				
	A1cso	Substitute limits and equating to 1 to form one	<u> </u>	g to $ka^3 = 3$		
(b)	M1	Indicating that they are integrating $xf(x)$ with a	an attempt at integrating $x^n \to x^{n+1}$			
	A1	Correct integration (dep on previous M1). Substitute limits and eq	unting to 1.5 to form a 2 nd expression	in terms of		
	dM1	(dep on previous wr). Substitute limits and eq k and a	uating to 1.5 to form a 2 expression			
	A1cso	Correct method shown to solve their 2 equation	ns to eliminate k and show $a=6$			
(c)						
	M1	Allow in terms of <i>k</i> for this mark For attempting their F(1.15) and their F(1.25) eleading to a value awrt 1.24	or a suitable tighter interval or for 'sol	ving' cubic		
	A1Both correct values and correct conclusion (allow $x = 1.2$) or awrt 1.24 and correct conclusion (allow $x = 1.2$). Allow change of sign argument if they have subtracted 0.5 (i.e. $-0.028 < 0 < 0.0038$).					

Question Number	Scheme			Marks
5(a)	U[0, 3]			M1
	$ \underbrace{ U[0,3]}_{3-1.8} \underbrace{ \frac{3-1.8}{3}} $	= 0.4		A1
				(2)
(b)	$X^2 = W^2$	$+(3-W)^{2}$		M1
	$X^{2} = W^{2} + 9 + W^{2} - 6W \implies X^{2} = 2W^{2} - 6W + 9$			A1
				(2)
(c)	$\mathrm{E}(W)=1$			B1
	Var(W) =	$=\frac{9}{12}=\frac{3}{4}$		B1
	$E(W^2) =$	$= \frac{9}{12} = \frac{3}{4}$ $= \frac{3}{4} + 1.5^{2}$ $= \frac{3}{4}$		M1
	$E(W^2) =$	3		A1
	So $E(X^2)$	$f(x) = 2 \times "3" - 6 \times "1.5" + 9 = 6$		M1A1
		<u>.</u>		(6)
(d)	$P(X^{2} > 5) = P(2W^{2} - 6W + 4 > 0)$			M1
	= P((2W-2)(W-2) > 0)			M1
	= P(W > 2) + P(W < 1)			dM1
	$=\frac{2}{3}$ oe			A1
				(4)
		Not	tes	Total 14
(a)	M1	Writing or using the correct distributi	1.0	
	A1	0.4 oe	3	
(b)	M1	Using Pythagoras to find the length	Note: $X^2 = W^2 + (W - 3)^2$ sco	ores M1A0
	A1	Brackets multiplied seen leading to X		
(c)	B1	1.5		
	B1	Var(W) = 0.75	Using integration: $E(W^2) = \int_{0}^{3}$	$\frac{1}{3}w^2 dw$ (ignore limits)
	M1	Writing or using		
	A1	3		
	M1			
	A1	6 An answer of 6 from correct work		
(d)				
		M1 Solving their 3-term quadratic ($W = 1$ and $W = 2$ implies 1 st two M marks)		
	dM1 (dep on 2 nd M1) Realising they need to add the 2 outer areas			
	A1	awrt 0.667		

Question Number		Scheme	Marks				
6(a)	Taking a random sample is quicker/cheaper/easier (compared to asking all of the youth club members).						
(b)	A <u>list/reg</u>	A <u>list/register/database</u> of <u>all</u> the youth club <u>members</u>					
(c)	The mem	<u>ibers</u>	(1) B1				
(d)	$p^2 = \frac{25}{64}$		(1) M1				
	$p^2 = \frac{25}{64}$ $p = \frac{5}{8}$		Al				
	" $\frac{5}{8}$ " + q + r = 1 or 2qr = $\frac{1}{16}$ or $\frac{25}{64}$ + 2" $\frac{5}{8}$ "q + 2" $\frac{5}{8}$ "r + q ² + $\frac{1}{16}$ + r ² = 1						
	Any two	equations from above	B1				
	$\frac{3}{8}q - q^2 =$	$=\frac{1}{32}$	dM1				
	$q = \frac{1}{4}$		A1				
	$P(M = 50) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} *$						
			(7) Total 10				
		Notes	1000110				
(a)	B1	Any one of the given reasons. Ignore extraneous non-contradictory reasons.					
(b)	B1	Idea of list(oe). Need all (oe) (eg complete list) and members.					
(c)	B 1	The members/a member					
(d)	M1	Correct method, may be implied					
	A1	$p = \frac{5}{8}$ or $P(X = 20) = \frac{5}{8}$					
	B 1	One equation in q and r from use of $p + q + r = 1$, $P(M = 60)$ or $\sum P(M=m) = 1$ see (allow ft on their value of p)					
	B1	Two correct equations in q and r Some will substitute directly into the third equation so may see: $\frac{25}{64} + \frac{5}{4}q + \frac{5}{128q} + q^2 + \frac{1}{16} + \frac{1}{1024q^2} = 1$ which is correct and scores B1B1					
	dM1	(dep on 1 st B1) Correct method to solve simultaneous equation leading to a probability for q or r (may be implied by $q = \frac{1}{4}$ or $r = \frac{1}{8}$ provided B1B1 scored)					
	A1	Correct probability for q (dependent on all previous marks in part (d))					
	A1cso*	Correct solution with use of $P(M = 50) = q^2$ and all previous marks awarded.					
	Note:	m 20 35 45 50 60 70					
		$P(M=m) = \frac{25}{64} = 2pq = 2pr = q^2 = \frac{1}{16} = r^2$					
		$\frac{25}{64} + 2pq + 2pr + q^2 + \frac{1}{16} + r^2 = 1$					